

添加微信好友, 获取更多信息
复制微信号
万盛交建2023年债权转让计划
??【直辖市稀缺项目】重庆市一小时经济圈热销项目
?规模:2亿
?期限:12个月 /24个月
?季度付息:每年3月10日、6月10日、9月10日和12月10日
?预期收益:
1年期:
A类 10万元(含)-50万元(不含) 8.8%
B类 50万元(含)—100万元(不含) 9.3%
C类 100万元及以上 9.8%
2年期:
A类 10万元(含)-50万元(不含) 9%
B类 50万元(含)—100万元(不含) 9.5%
C类 100万元及以上 10%
受让(认购)起点:人民币10万元
?募集账户:
户 名:重庆市万盛经开区交通开发建设集团有限公司
账 号:8101 0104 0006 344
开户银行:重庆银行万盛支行
?【融资主体】重庆xx设集团有限公司是万盛区经开区重点国企,主要负责万盛区的基础设施及开发、建设、经营、管理等,对万盛经开区的经济发展、招商引资等起着至关重要的作用。截止2022年9月,公司总资产达79.9亿元,公司在公开市场有发债经历。
?【担保主体】重庆市万盛xxx开发投资集团有限公司是万盛经开区重要的城市开发建设投资和运营主体,主要负责城区范围内的基础设施建设及棚户区改造等业务。公司实力雄厚,总资产为176.9亿元。公司主体评级为AA,担保能力强,违约风险极低。
万盛交建2023年债权转让计划
政信知识:
对基坑崩塌、滑坡和地面沉降灾害的地质灾害预测评估方法进行了分析和阐述
关键词:深基坑;地质灾害危险性评估;加权因素比较法;危害程度分区 随着我国社会经济的发展和城市建设的加速,城市地下空间的利用越来越普遍,深基坑工程也越来越多、开挖深度也越来越大,对周边环境的影响越来越严重,深基坑可能产生的地质灾害问题也越来越受到人们的重视
本文对深基坑工程的主要地质灾害类型及成因机制、主要灾种的评估方法进行了归纳与总结
1深基坑工程的主要地质灾害类型 通常深基坑是指开挖深度超过5m(含5m),或深度虽未超过5m,但地质条件和周围环境以及地下管线特别复杂的土方开挖、支护、降水工程
深基坑开挖容易引起基坑变形及坑壁坍塌、地下水渗透破坏、地下水位下降等现象,从而造成崩塌、滑坡、地面沉降等地质灾害
地质灾害危险性依据地质灾害危害程度和发育程度分为大、中、小三个级别(表1)
地质灾害危险性评估可采用工程类比法、层次分析法、加权因素比较法、相关分析法、模糊综合评判法、定量计算法等[1],评估结论可综合两种以上方法确定
2崩塌、滑坡灾害的预测评估 2.1基坑崩塌、滑坡灾害的形成机理 基坑开挖时,随着深度的增加,基坑侧壁的土压力呈指数级增大,当土压力接近于抗滑力或支挡结构的支挡力时,基坑壁会出现明显的侧向位移,当土压力超过抗滑力或支挡力时,基坑壁将产生失稳滑移,岩土质基坑顺向坡段开挖时,沿顺向结构面易产生整体的变形与滑移,其余如渗透破坏(流土、管涌)、基坑突涌等也会造成基坑的变形、失稳
2.2基坑潜在崩塌、滑坡评估方法 本文推荐采用定量计算法结合加权因素比较法进行评估
2.2.1定量计算建立基坑的工程地质模型,采用极限平衡法对基坑各侧边坡的稳定性系数进行计算,评价基坑边坡的稳定性状态
基坑坡率根据放坡空间大致拟定,如不具备放坡空间,则应按照直立边坡来考虑
选择计算方法时,应根据基坑边坡潜在的破坏模式确定:均质土坡通常假设沿坡体内部滑动,滑动面近似于圆弧形;岩土混合质坡除内部滑动以外,还要验算沿土层基岩接触面的折线型滑动;岩质坡应结合结构面分析成果,对沿不利结构面或不利组合面滑动的可能性进行验算
2.2.2加权因素比较法以上定量计算方法未考虑基坑的支护结构,仅按放坡条件进行计算,在城镇地区,用地范围周边通常有道路、建筑等,放坡空间小,不考虑支护时的计算,绝大多数不稳定
实际上按工程常规,深基坑在开挖时都会进行支护,大部分基坑的支护措施是成功的,有少量的基坑即使进行了支护,还是会产生变形、沉降过大甚至崩塌、滑坡事故
基坑支护是否可靠与很多因素有关系,主要有技术风险、施工管理风险、环境风险[3]
在地灾评估阶段,往往基坑仅有一个大致的范围和概略的深度,因此对技术风险和施工管理方面的风险无法全面分析,根据基坑工程的经验,基坑深度大、坑壁岩土层差、水头高、周边环境复杂的基坑出现问题的可能性和概率较大,因此基坑边坡的地灾评估可以按照基坑的深度、地质条件及周边环境进行加权因素比较,概略评价基坑的风险及潜在的危险性(表2)
对于评价为发育程度强烈的基坑段,说明基坑支护的风险大,在今后的设计、施工中要特别小心和注意
除评价危害程度和危险性评级,评估报告应阐述潜在崩塌、滑坡灾害的主要影响因素和情况,分析变形破坏模式和最深一层潜在滑裂面的位置,以供后续设计、施工参考,如此评估成果才具有指导意义
3基坑开挖引发地面沉降的预测评估 3.1基坑开挖引发地面沉降的原因 龚晓南等人认为[4],基坑开挖引起的地面沉降可能由以下原因造成:(1)抽水、漏水引起的地基土体固结沉降;(2)围护结构水平位移或基坑底隆起造成的沉降;(3)基坑开挖引起砂、土流失引起的沉降,如:抽水引起的土、砂损失引起的沉降,砂、土从围护结构中挤出造成的沉降
围护结构水平位移和基坑底隆起引起的沉降一般较小,沉降量与支护结构型式关系密切,地灾评估阶段还无法合理评价这些沉降
砂、土损失造成的沉降有一部分可归结到崩塌、滑坡灾害范畴,另外一些是由于渗透破坏产生管涌、流土造成的沉降,由于未知条件太多,评估阶段也无法合理进行评价
基坑周边含水层失水引起的固结沉降发生较为普遍,是基坑周边地面沉降的主要部分,因此也是地灾评估的主要研究对象
3.2地面沉降预测分析 3.2.1预测指标与分级标准
通过上节的分析,地灾评估主要研究方向是基坑降水、基坑漏水引起的固结沉降
按照评估规范的划分标准(表3),地面沉降的发育程度可按近5年平均沉降速率或累计沉降量进行评价
基坑开挖引起的地面沉降将发生于基坑施工期间,一般在一年以内,因此应采用累计沉降量评价其发育程度
3.2.2累计沉降量的计算公式
据《建筑基坑支护技术规程》(JGJ120-2012)[5],可采用如下公式估算基坑降水或漏水引起的累计地面沉降:s=φw∑Δσ'ziΔhiEsi(1)式中:s―计算剖面的地层压缩变形量(m);φw—沉降计算经验系数,应根据地区工程经验取值;Δσzi'—降水引起的地面下第i层的平均附加有效应力;Δhi—第i层土的厚度(m);Esi—第i层土的压缩模量(kPa)
附加有效应力可按下列公式计算:(1)计算点位于初始地下水位以上时,Δσzi'=0
(2)计算点位于降水后水位与初始地下水位之间时,Δσzi'=γwz
(3)计算点位于降水后水位以下时,Δσzi=λiγwsi式中:γw─水的重度(kN/m3);a0─计算点至初始地下水位的垂直距离(m);si─计算点对应的地下水位降深(m);λi─计算系数
一般情况下,在评估过程中会做如下假设:(1)初始水位在钻孔平均水位的基础上,考虑水位变幅后确定;(2)水位从初始水位降落至坑底以下0.5m;(3)降落水位以下压缩层计算深度,原则上计算至低压缩层顶面或隔水层顶面,且一般不超过计算剖面处的降深值,降落水位以下的沉降量,一般要在计算值的基础上适当折减
3.2.3地面沉降危害性分区
地面沉降的范围取地下水降落漏斗的范围,当基坑含水层为潜水时,可按以下经验公式估算降落漏斗的半径R:R=2■sHk(2)式中:s—地下水位降深;k—土层渗透系数
基坑降水、漏水引起的地面沉降是面积性灾害,越靠近降水井或基坑壁,水位下降幅度越大,沉降也最严重,反之沉降较为轻微
在基坑各侧选择若干计算剖面,计算各断面处的最终沉降量,连成曲线(图2),按表3的判断标准,找出300mm、800mm的界限点,即可进行危害程度分区(图2)
统计出危害区的危害对象,确定潜在灾害的危险性(表1)
4结语 本文对基坑开挖可能引发的地质灾害类型、危险性评估方法,作了全面、系统地阐述,在常规方法的基础上,提出了基坑潜在崩塌、滑坡危害程度评估的加权因素比较法,提出了基坑潜在地面沉降危害程度的分区方法
本文提出的方法是在现行技术规范、技术标准的基础上结合工程实践所制定的,十分便于评估工作应用,成果也较为客观
从严格意义上来说,实际基坑工程中变形与渗流问题非常复杂,影响因素非常多,如何在前期全面、客观地评估基坑工程潜在地质灾害的危害程度及危险性,是今后需要不断完善和不断深入探讨的问题
参考文献: [1]广东省地质灾害防治协会.广东省地质灾害危险性评估实施细则(2016年修订版)[S],2016-5. [2]中华人民共和国地质矿产部.地质灾害危险性评估规范(DZ/T0286-2015)[S].北京:地质出版社,2015. [3]宋瑞柯.深基坑工程施工风险分析及控制策略[J].防护工程,2017(9):110-115 [4]龚晓南,高有潮等.深基坑工程设计施工手册[M].北京:中国建筑工业出版社,1998:20. [5]中华人民共和国住房和城乡建设部.建筑基坑支护技术规程(JGJ120-2012)[S].北京:中国建筑工业出版社,2011.